Hyperhomocysteinemia increases arterial permeability and stiffness in mice.
نویسندگان
چکیده
We have reported that hyperhomocysteinemia (HHcy) evoked by folate depletion increases arterial permeability and stiffness in rats and that low folate without HHcy increases arterial permeability in mice. In this study, we hypothesized that HHcy independently increases arterial permeability and stiffness in mice. C57BL/6J mice that received rodent chow and water [control (Con), n=12] or water supplemented with 0.5% L-methionine (HHcy, n=12) for 18+/-3 wk had plasma homocysteine concentrations of 8+/-1 and 41+/-1 microM, respectively (P<0.05), and similar liver folate (approximately 12+/-2 microg folate/g liver). Carotid arterial permeability, assessed as dextran accumulation using quantitative fluorescence microscopy, was greater in HHcy (3.95+/-0.4 ng.min-1.cm-2) versus Con (2.87+/-0.41 ng.min-1.cm-2) mice (P<0.05). Stress versus strain curves generated using an elastigraph indicated that 1) maximal stress (N/mm2), 2) physiological stiffness (low-strain Young's modulus, mN/mm), and 3) maximal stiffness (high-strain Young's modulus, N/mm) were higher (P<0.05) in aortas from HHcy versus Con mice. Thus, chronic HHcy increases arterial permeability and stiffness. Carotid arterial permeability also was assessed in age-matched C57BL/6J mice before and after incubation with 1) xanthine (0.4 mg/ml)/xanthine oxidase (0.2 mg/ml; X/XO) to generate superoxide anion (O2-) or 50 microM DL-homocysteine in the presence of 2) vehicle, 3) 300 microM diethylamine-NONOate (DEANO; a nitric oxide donor), or 4) 10(-3) M 4,5-dihydroxy-1,3-benzene disulfonic acid (tiron; a nonenzymatic intracellular O2- scavenger). Compared with preincubation values, X/XO and dl-homocysteine increased (P<0.05) permeability by 66+/-11% and 123+/-8%, respectively. DL-Homocysteine-induced increases in dextran accumulation were blunted (P<0.05) by simultaneous incubation with DEANO or tiron. Thus, acute HHcy increases arterial permeability by generating O2- to an extent whereby nitric oxide bioavailability is reduced.
منابع مشابه
Influence of folate on arterial permeability and stiffness in the absence or presence of hyperhomocysteinemia.
OBJECTIVE Elevated plasma total homocysteine (tHcy) is associated with risk for cardiovascular disease. A common cause of mild hyperhomocysteinemia (HHcy) is folate deficiency. We sought to determine whether folate deficiency per se increases arterial permeability (quantitative fluorescence microscopy) and stiffness (vessel elastigraph), and whether the effects of folate deficiency are more sev...
متن کاملHyperhomocysteinemia evoked by folate depletion: effects on coronary and carotid arterial function.
High circulating concentrations of homocysteine (ie, hyperhomocysteinemia [Hhcy]) impair the vascular function of peripheral conduit arteries and arterioles perfusing splanchnic and skeletal muscle regions. The effects of HHcy on coronary resistance vessel function and other indexes of vascular function, ie, arterial permeability and stiffening, are unclear. We tested the hypotheses that HHcy i...
متن کاملHyperhomocysteinemia Evoked by Folate Depletion: Effects on Coronary and Carotid
High circulating concentrations of homocysteine (ie, hyperhomocysteinemia [Hhcy]) impair the vascular function of peripheral conduit arteries and arterioles perfusing splanchnic and skeletal muscle regions. The effects of HHcy on coronary resistance vessel function and other indexes of vascular function, ie, arterial permeability and stiffening, are unclear. We tested the hypotheses that HHcy i...
متن کاملIs arterial stiffness ready for daily clinical practice?
Arterial stiffness is associated with major cardiovascular risk factors such as age [1], hypertension [2], smoking [3], hypercholesterolemia [4,5], diabetes types I [6] and II [7], insulin resistance [8] and hyperhomocysteinemia [9]. The majority of these data come from observational cross-sectional studies. Although these type of studies can only show an association between arterial stiffness ...
متن کاملHyperhomocysteinemia promotes vascular remodeling in vein graph in mice.
This study investigated the role and mechanism of Hyperhomocysteinemia (HHcy) on vascular remodeling in mice. We assessed the effect of HHcy on vascular remodeling using a carotid arterial vein patch model in mice with the gene deletion of cystathionine-beta-synthase (Cbs). Vein grafts were harvested 4 weeks after surgery. Cross sections were analyzed using Verhoeff-van Gieson staining, Masson`...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006